Workstream 1 Update

Software Tools for the Architecture of the Hybrid AC-DC Grid

Josh Schipper josh.schipper@epecentre.ac.nz 12/02/2024

- 1. Workstream 1 Objectives
- 2. Timeline
- 3. Progress to Date
- 4. Architecture

Outline of Objectives

Objectives of Workstream 1

Tools

Capabilities

- To simulate hybrid AC-DC network topologies with detailed switching and dynamic average models of converter technologies
- Capable of simultaneous simulation of both:
 - Transmission and Sub-transmission networks
 - Sub-transmission and distribution networks
 - AC and DC networks

F

- FAN Outcomes
- Feasibility study to optimize DC integration

Basis for Future Industry Tool

- For Planning
- For Contingency Analysis/ Security Assessment

Objectives of Workstream 1

Tools

SHORT-CIRCUIT ANALYSIS

Static Assessment

Basis for Future Industry Tool

- To address protection coordination
- Design of protection system and associated settings

FAN Outcomes

• Collaborate with Workstream 2 to understand the impact of protection requirements on circuit topology

Capabilities

- Capable of simultaneous simulation of both:
 - Transmission and Sub-transmission networks
 - Sub-transmission and distribution networks
 - AC and DC networks

Objectives of Workstream 1

Tools

Basis for Future Industry Tool

 A planning and operational tool for assessing network stability

FAN Outcomes

- Determine the system security requirements on network architecture.
- Assess the impacts of converter control design on whole networks.

Capabilities

- Capable of simultaneous simulation of both:
 - Transmission and Sub-transmission networks
 - Sub-transmission and distribution networks
 - AC and DC networks
- Achieving this capability will require a large amount of smarts and computational resources to have a fast methodology.

Future Architecture
of the NetworkObjectives of Workstream 1

Models for Verification

Future Architecture of the Network TEWHATUNGA-HIKO-	Timeli	ne		PRESENT			
Tools			DYNAMIC ANALYSIS				
DOWED EI			SHORT-CIRCUIT ANAL	YSIS – STATIC ASSESSN	ЛЕNT		
TART	$\ $						FND
2020	2021	2022	2023	2024	2025	2026	2027
Radnya Mukhe Neville Watson Nirmal Nair	edkar 1 Veerabrahmam Bathini Josh Schipper —						
Students		Choidorj Adiyabazar Christian Yaj		PhD Student #3 PhD Student #4		>	
Saranya Ramani —	Review of Power System Ammar Ariffin Huey Ann Yap Finn Drabsch	Analysis Dynamic Phasors Holomorphic Embedded I HVDC Model and Literatu William Beauchamp Ryan Murray Ryan King	oad-flow Method e Review Database Acceleration Techniques Newton-Krylov Methods Optimisation Methods fo (Anna) Yuanyuan Qin Daniel Duan (Max) Nghia Vang	for Fixed Point Power-flow for Power-flow AC-DC Power-flow NZ Power System Model a Verify Tool with Cigre Ben Sparse Matrix Methods fo	ınd Tool User Interface – Case S chmark AC-DC Models – Case S r Linear Equations	tudy l tudy 2	

Future Architecture
of the NetworkProgress to Date - Component Models

Lighter shaded boxes are not critical to tool requirements.

Architecture – Questions that need Answering

- 1. What are the benefits of an HVDC grid running the length of New Zealand?
- 2. Is there a place for Medium Voltage DC (MVDC)? Then what about HV to MV DC converters?

Progress to Date - Summary

FAN Research Partners

New Zealand

THE UNIVERSITY OF WAIKATO Te Whare Wānanga o Waikato

Overseas - University of Cambridge, Aalborg University